Curriculum Vitae

Personal Details:

Name: Dr. Rupshikha Patowary Hazarika Address: Qtr No 6, BSNL Qtr Complex, Dharapur,Guwahati-17 Email(s) and contact number(s): ruprin_03@yahoo.co.in Contact No.: +91-9401659899 Date of Birth: 03/02/1989

Educational Qualification

Schooling: Shrimanta Shankar Academy (2005)

Higher Secondary: Kendriya Vidyalaya (2007)

Graduation: Biotechnology at St. Anthonys' College (2010)

Post Graduation: Molecular Biology and Biotechnology, Tezpur University (2012)

Doctorate of Philosophy (P.hD): Biotechnology from Institute of Advance Study in Science & Technology (IASST) **Area of Research:** Microbial Biotechnology, Environmental remediation especially mitigation of Petroleum Hydrocarbon by involving microbial metabolites, Pesticide biodegradation, Development of cheap Media from agro-Industrial wastes, The role of Biochar in environmental remediation.

Work Experience:

- 1. Worked at Research Associate (RA) at Indian Institute of Technology (IITG) for a Department of Biotechnology (DBT) sponsored Project.
- 2. Institutional Post Doctoral Fellow (IPDF) at Indian Institute of Technology (IITG).
- 3. Institutional Post Doctoral Fellow (IPDF) at Institute of Advance Study in Science & Technology (IASST).

Other relevant work-experiences:

Under took several administrative tasks during post doctoral tenure and served as managing person for helding several national and interaction conferences.

Recognition/Awards:

- 1. 2nd Rank in the University at B.Sc and M.Sc.
- 2. SLET and GATE Qualified.
- 3. Achieved CSIR-SRF Fellowship.
- 4. Achieved Patent, Govt. of India, for development of method for rhamnolipid.
- 5. Young Researcher award by the Institute of Scholars.

Research Publications:

- 1. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant, *Applied Biochemistry and Biotechnology(Springer)*, **I.F:** 3.1.
- 2. Uptake of Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbons (PAHs) by Oryza sativa L. Grown in Soil Contaminated with Crude Oil, *Bulletin of Environmental Contamination and Toxicology*, **I.F:** 2.9.
- 3. Development of an efficient bacterial consortium for the potential remediation of hydrocarbon contaminated sites, *Frontiers in Microbiology*, I.F: 6.1.
- 4. Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. *Frontiers in microbiology*, I.F: 6.1
- 5. Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil. International Biodeterioration & Biodegradation. I.F. 5.0
- 6. Recycling of bakery waste as an alternative carbon source for rhamnolipid biosurfactant production. Journal of Surfactants and Detergents, I.F: 1.98
- 7. Microplastics in marine and aquatic habitats: sources, impact, and sustainable remediation approaches. Environmental Sustainability.
- 8. Biodegradation of hazardous naphthalene and cleaner production of rhamnolipids—Green approaches of pollution mitigation. Environmental Research. I.F.: 8.4
- 9. Green production of noncytotoxic rhamnolipids from jackfruit waste: process and prospects. Biomass Conversion and Biorefinery. I.F: 5.0

- 10. Soil treatment using a biosurfactant producing bacterial consortium in rice fields contaminated with oily sludge—a sustainable approach. Environmental Research.I.F: 8.4
- 11. Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study. Environmental Science and Pollution Research. I.F: 5.8
- 12. Congenial remediation treatment of petroleum hydrocarbon contaminated formation water: Mechanisms and consequences for degradation and adsorption, Water Resources and Industry, I.F: 5.3
- Baseline study of water, soil, and identification of potential native phytoremediators of total petroleum hydrocarbon from oil-contaminated areas in the vicinity of Geleky oilfield of Assam. Environmental Monitoring and Assessment. I.F.: 3.2
- 14. Enhancing secondary metabolites and alleviating environmental stress in crops with mycogenic nanoparticles: A comprehensive review. Biocatalysis and Agricultural Biotechnology. I.F: 4.0

Book Chapter:

- 1. Role of Biosurfactant Producing Micro-organism in sustainable Agriculture. Purbayan Publishers
- 2. Paenibacillus, Elsevier.
- 3. Biosurfactants: An efficient tool for bioremediation of polycyclic aromatic hydrocarbons (PAHs) from oil contaminated sites. EBH Publisher
- 4. Biosurfactant-assisted phytoremediation for a sustainable future, Elsevier.
- 5. Potential application of biochar for efficient restoration restoration of crude oil contaminated sites, Springer.

Workshops and Conferences:

Attended several National and International Conferences to deliver research work presentations. Availed DST Grant

Fellowship (complete fellowship) for participating in an International Conference held at Kyoto, Japan.

Membership:

Life time Member of Assam Science Society.

S1 No	Authors	Title	Name of Journal	Year	Volume	Page	ISSN	I.F
1	Rupshikha Patowary, Kaustuvmani Patowary, Mohan Chandra Kalita, Suresh Deka.	"Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant"	Applied Biochemistry and Biotechnolog y (Springer).	2016	183(3)	383-399	1559- 0291	3.094
2	Kaustuvmani Patowary, Rupshikha Patowary , Mohan Chandra Kalita, Suresh Deka	"Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites"	Frontiers in microbiology	2016	7(1092)	1-14	1664- 302x	6.064
3	Rupshikha Patowary, Kaustuvmani Patowary, Mohan Chandra Kalita, Arudhuti Devi, Suresh Deka.	"Uptake of Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbons (PAHs) by Oryza sativa L. Grown in Soil Contaminated with Crude Oil".	Bulletin of Environmental Contamination and Toxicology (Springer).	2017	98(1)	120-126	1432- 0800	2.807
4	Kaustuvmani Patowary, Rupshikha Patowary , Mohan Chandra Kalita, Suresh Deka	"Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon"	Frontiers in microbiology	2017	8(279)	1-14	1664- 302x	6.064
5	Rupshikha Patowary, Kaustuvmani Patowary, Mohan Chandra Kalita, Suresh Deka	"Application of Bio-surfactant for enhancement of bioremediation process of crude oil Contaminated soil"	International Biodeterioration & Biodegradation (Elsevier).	2018	129	50-60	0964- 8305	4.907
6	Kaustuvmani Patowary, Moonjit Das, Rupshikha	"Recycling of Bakery Waste as an Alternative Carbon Source	Journalof Surfactant and Detergents, (Wiley)	2019	22(2)	373-384	1558- 9293	1.97

	Patowary, Mohan	for Rhamnolipid Biosurfactant						
	Chandra Kalita,	Production"						
	Suresh Deka							
7	Rupshikha Patowary,	Microplastics: Sources,	Environmental	2021	1	1-11	2666-	
	Hemen Sarma, Vivek	impact, and sustainable	Sustainability				0490	
	Kumer, Arpita Roy,	remediation approaches						
	Soumya Pandit,Ram							
	Prasad							
8				2022	209	112875	0013-	
	Rupshikha Patowary ,	Biodegradation of hazardous	Environmental				9351	8.431
	Kaustuvmani Patowary,	naphthalene and cleaner	Research					
	Mohan Chandra Kalita,	production of rhamnolipids —						
	Suresh Deka , Jayanta	Green approaches of pollution						
	Madhab Borah , Sanket	mitigation						
	J. Joshi , Ming Zhang ,							
	Wanxi Peng , Gaurav							
	Sharma, Jorg "Rinklebe,							
	Hemen Sarma							
9	Rupshikha Patowary	Green production	Biomass Conversion	2022	1	1-14	2190-	4.987
	Kaustuvmani	of noncytotoxic rhamnolipids	and Biorefinery				6815	
	Patowary	from jackfruit waste: process						
	Mohan Chandra	and prospects						
	Kalita · Suresh Deka ·							
	Su Shiung Lam							
	Hemen Sarma							
10.	Kaustuvamni Patowary,	Soil treatment using a	Environmental	2023	-	-	0013-	8.43
	Tamanna Bhuyan,	biosurfactant producing	Research				9351	
	Rupshikha	bacterial consortium in rice						
	Patowary,,Hemen	fields contaminated with oily						
	Sarma	sludge— a sustainable approach						
11.	Rupshikha Patowary,	Concurrent degradation of	Biodegradation					
	Bhagyalakhmi	petroleum sludge and	(Under Review)					
	Rajbongshi, Arundhuti	simultaneous rhamnolipid						
	Devi, Manisha Goswami	biosurfactant production: An						

		aesthetic bioremediation				
		approach				
12.	Rupshikha Patowary,	Advanced bioremediation by an	Environmental	2023		5.8
	Arundhuti Devi, Ashis	amalgamation of	Science and Pollution Research (Published)			
	K. Mukherjee	nanotechnology				
		and modern artificial				
		intelligence for efficient				
		restoration of crude				
		petroleum oil-contaminated				
		sites: a prospective study				
13.	Nimisha Sarma, Manisha	Baseline study of water, soil,	Environmental			3.1
	Goswami, Rupshikha	and identification of potential	Assessment (Accepted)			
	Patowary,,	native phytoremediators of total	(
	Arundhuti Devu	petroleum hydrocarbon from				
		oil-contaminated areas in the				
		vicinity of Geleky oilfield of				
		Assam				
14.	Manisha Goswami,	Congenial remediation	Water Resources			5.2
	Rupshikha	treatment of petroleum	(Accepted)			

Patowary,,	hydrocarbon contaminated			
Arundhuti Devi	formation water: Mechanisms			
	and consequences for			
	degradation and adsorption			

13. Books Chapters

Sl no	Title	Author's Name	Publisher	ISBN	Year of Publications
1	Role of Biosurfactant Producing Micro-organism in sustainable Agriculture	Rupshikha Patowary, Kaustuvmani Patowary, Mohan Chandra Kalita, Suresh Deka	Purbayan	978-81- 92955-55-1	2017
2	Paenibacillus	Rupshikha Patowary, Hemen Deka	Elsevier	978-0-12- 823414-3	2020
3	Biosurfactants:An efficient tool for bioremediation of polycyclic aromatic hydrocarbons (PAHs) from oil contaminated sites	Rupshikha Patowary	EBH Publishers	978-93-90434- 47-3	2021
4	Biosurfactant-assisted phytoremediation for a sustainable future	N F Islam, Rupshikha Patowary ,Hemen Sharma	Elsevier	978-01-28228- 93-7	2021
5.	Potential application of biochar for efficient restoration restoration of crude oil contaminated sites	Rupshikha Patowary, Arundhuti Devi, Ashis Mukherjee	Elsevier (Accepted and is under publication house)		

14. List of Conferences attended

S.No	Conference name	Paper	Type of presentation	Venue
1	National seminar on Bioprospects on Gene Pool	Cost effective strategy for production of biosurfactant by newly isolated bacterial strain SR17 utilizing dairy wastewater as the sole medium	Oral	D.K. College, Mirza, Assam.
	International conference on Emerging trends in biotechnology (NHBT-2015)	Uptake of Poly Aromatic Hydrocarbons by rice (<i>Oriza</i> <i>sativa</i>) crops grown near Lakowa Oil fields of Upper Assam	Poster	NIIST, Trivandrum
3	Recent Advancements in Environmental Research (RAER) 2016	Biosurfactant Mediated Biodegradation of Petroleum Crude Oil	Poster	IIT, Guwahati
4	Association of Microbiologists of India (AMI), 2016	Biodegradation of napthalene by <i>Pseudomonas aeruginosa</i> SR17 and simultaneous production of biosurfactant	Poster	Gauhati University
5	International conference on Environment Pollution and Prevention, 2016	Biosurfactant facilitated biodegradation of naphthalene by Pseudomonas aeruginosa	Oral	Kyoto, Japan (availed DST travel Grant
6	International conference on Environment and Ecology, 2018	Catabolism of phenanthrene and simultaneous production of rhamnolipid biosurfactant	Oral	Gauhati University
7	Bio-innovation for Environmental and Health Sustainable	Degradation of crude oil and simultaneous production of biosurfactant	Poster	CSIR-IITR, Lucknow

16. Technical Skills: Expertise in handling, culturing, and maintaining microbial cultures, extraction of biochemical analysis, Molecular analysis (DNA isolation, amplification, PAGE, SDS, etc.). Ability to

handle several sophisticated instruments: FTIR, LC-MS, GC-MS, SEM, AAS. Expertise in extraction of microbial metabolites from culture media. Expertise in carrying out study for microbial remediation of petroleum contaminated samples. Skills on compositional analysis of soil and water samples. Knowledge on basic bioinformatics to obtain phylogenic relationship of microorganisms to those already existing databases. Attended STUTI training programme for handling sophisticated instruments.

Rupshikha Patowary

Name: Dr. Rupshikha Patowary Hazarika Place : Guwahati